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SUMMARY

This paper compares several linear-theory-based models for droplet shattering employed for simulations
of spray impingement on �at wall surface or a circular cylinder. Numerical simulations are conducted
using a stochastic separated �ow (SSF) technique that includes sub-models for droplet dynamics and
impact. Results for spray impingement over a �at wall indicate that the linear theory applicable for
a single droplet impact over-predicts the number of satellite (or secondary) droplets upon shattering
when compared to experimental data. The causes for the observed discrepancies are discussed. Numer-
ical simulation results for spray impingement over a circular cylinder in cross �ow are obtained and
discussed. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Spray impingement over a solid object is of interest to the �re science community. For
�re suppression applications, the dynamic behaviour and distribution of spray droplets are
important parameters for determining optimal �re suppression conditions. Often the prediction
of spray transport within cluttered environments is of signi�cant interest. Usually, the operating
pressure is high, allowing �re suppression sprays to achieve maximum penetration in the
enclosure without concern for objects that may be inside. At this high operating pressure, the
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momentum of the injected droplets is high enough that droplets shatter upon impact. In this
case, droplet characteristics (i.e. size and velocity) suddenly change, resulting in unexpected
�re suppression behaviour. For this reason, the characteristics of shattered droplets must be
accurately predicted in order to properly describe droplet transport near the impact region.
The impact of isolated droplets has been extensively studied. The maximum spreading

radius of a droplet, its relationship with the dissipated and surface energies, the impacting
criteria (distinguished from droplet sticking, rebounding, and shattering), and the number of
‘�ngers’ formed during the shattering regime are often the focus of the single droplet impact
studies [1–5]. While droplet sticking and rebounding play a small role in de�ning the overall
spray characteristics, shattering can substantially change the distribution of droplet sizes. At
su�ciently high impact velocities, the droplet �rst splashes (a crown shape is clearly visible
in the liquid–liquid impact as shown in Figure 1; splashing also does occur in the liquid–
wall impact) and then attains a pancake shape (see Figure 2(a)) and then transitions into
‘�ngers’ (see Figure 2(b)). The formation of the satellite droplets results from the growth
of an azimuthal instability mode and is sometimes referred to as a ‘�nger’ instability. The
‘�nger’ is formed at the end of the spreading process along the pancake edge. Note that a
‘cusp’ is the ligament formed due to splashing from a crown.
Previous researchers estimated the number of �ngers around the rim of a crown using

linear stability theory. Rieber and Frohn [8] using a Rayleigh instability type of analy-
sis showed numerically that the most unstable wavelength is �=4:51drim, where drim is
the thickness of the rim which can be used to predict the number of cusps, Nc, for a

Figure 1. Formation of satellite droplets around the ‘crown’ rim [6] at low-speed impact. Circumferen-
tial length of a ring with respect to the rim diameter is l=�Dmax = 39drim. Applying the Rayleigh
instability (�=4:51drim) yields the number of satellite droplets, N = l=�≈ 9, which seems to be
in agreement with the number of satellites in this �gure. Printed with the permission of Andrew

Davidhazy of Rochester Institute of Technology.
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Figure 2. (a) Schematics of droplet shattering phenomenon on a solid wall; and (b) Experimental
image of a shattering moltin tin droplet [7]. Reprinted by the permission of Elsevier.

water droplet impact on a water pool. Marmanis and Thoroddsen [3] showed experimen-
tally that the number of �ngers, Nf , is strongly dependent on the following parameter:
Nf ∝ (0:5U=

√
�)(�2�D3=�)0:25 ∝ (We0:25Re0:5)0:75, which includes droplet diameter (D), impact

speed (U ), liquid density (�), kinematic viscosity (�), and surface tension (�). Note that
Nc �=Nf due to nonlinear e�ect during the droplet spreading (addressed in Section 2.3).
Thoroddsen’s subsequent work [9] reiterated the importance of viscosity, and strongly dis-
puted Allen’s theory [1] that omitted the e�ect of the liquid’s viscosity. While the importance
of viscosity was also reemphasized by Loehr and Lasek [10], Kim et al. [4] revisited Allen’s
potential �ow theory and claimed that Allen’s omission of viscosity was valid. Kim et al. [4]
found that their numerical and experimental work was consistent with Allen’s utilization of the
Rayleigh–Taylor instability [11, 12]. Kim et al. [4] also found that their work was consistent
with the Range and Feuillebois’s experiment [13] which showed that the number of �ngers
was insensitive to the liquid viscosity. More recently, Mehdizadeh et al. [5] recon�rmed that
the Rayleigh–Taylor instability is capable of accurately predicting the number of �ngers for
the wide range of Weber number.
In this study, the aforementioned linear theories and the empirical formula of Marmanis and

Thoroddsen [3], (speci�cally, four di�erent estimates of satellite droplet size) are assumed,
based on: (1) the Rayleigh instability [14] used by Rieber and Frohn [8]; (2) the Rayleigh–
Taylor instability of Kim et al. [4], Aziz and Chandra [7], and Mehdizadeh et al. [5]; (3) the
Weber instability [15] which accounts for the liquid viscosity e�ect; and (4) the impact of
the Reynolds number used by Marmanis and Thoroddsen [3] who emphasized the importance
of liquid viscosity.
The focus of the �rst part of the e�ort is to address the pros and cons of the applied

linear theories, and assess the role of viscosity in modelling droplet shattering over a solid
surface with comparison to the experimental data of Powell and Lee [16]. The analysis is then
extended to the case of spray impingement over a circular cylinder. Our main interest is on
the e�ect of droplet size distributions that might be signi�cant in �re suppression scenarios.

2. COMPUTATIONAL MODEL

2.1. Modelling background

Numerical simulations are conducted using Sandia’s �re �eld modelling code VULCAN,
which has been extended to handle the dilute multiphase �ow physics found in evaporating
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and reacting sprays [17]. The spray model is coupled with the Navier–Stokes solver, based on
a Reynolds-averaged Navier–Stokes (RANS) formulation employing a standard k–� turbulence
closure model [18]. The gas-phase �ow is calculated on a Eulerian staggered Cartesian grid
using the SIMPLEC method [19].
The droplet phase evolves using a Lagrangian approach based on the stochastic separated

�ow (SSF) model [20, 21]. Evolution equations for collections of droplets with similar sizes
and initial conditions, denoted as parcels, are used to reduce computational cost. The parcels
are advanced under the in�uence of modelled turbulent �uctuations in the gas-phase properties.
Further details may be found in Reference [16].

2.2. Conservation of energy and mass for shattering droplet

A droplet impact model based on the work of DesJardin and coworkers is used in this
study [22]. The model is formulated using simple mass and energy conservation princi-
ples at three thermo-physical droplet states shown in Figure 3. State (1) corresponds to the
pre-impact state where the droplet is assumed to be spherical in shape and its mass and energy
can be expressed as follows:

m= �(1)V (1) =�(1)�D(1)3=6

E = E(1)S + E(1)KE =�(1)A(1) + �(1)V (1)
(
u(1)

2
+ v(1)

2
+ w(1)

2
)
=2 (1)

= �(1)�D(1)2 + �(1)�D(1)3
(
u(1)

2
+ v(1)

2
+ w(1)

2
)
=12

Figure 3. Con�guration states during droplet impact consisting of: (1) pre-impact; (2) impact; and
(3) post-impact (i.e. sticking, rebound or shattering).
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where V and D are the droplet volume and diameter, respectively. EKE and ES denote the
droplet kinetic and surface energies and are expressed in terms of the droplet velocity compo-
nents, u, v, w, surface area, A, and liquid surface tension, �. The superscript (1; 2; 3) notation
indicates properties of the droplet before, during and after impact, respectively. At impact
state (2), the droplet is assumed to be roughly pancake shaped, with a maximum diameter
equal to Dmax. At this state, the kinetic energy of the droplet is negligible and results in only
a surface energy contribution to the total energy of the droplet [23],

E(2)S =
�
4
D2
max(1− cos �)� (2)

where � is the contact angle de�ned as the intersection of the tangent line at the liquid–
vapour interface with the wall. The wettability (the surface roughness which a�ects the
capability of a droplet to stick or rebound) of the cylinder increases as the droplets accumu-
late on the contacting surface. At steady state, droplets are essentially impacting the liquid
�lm, rather than on a dry surface. The contact angle of �=140◦ is selected for the spray
impingement on a �at surface case, based on the measurement of Aziz and Chandra [7] and
Bussman et al. [24].
The droplet diameter at state (2) may be determined through an energy balance by equating

the pre-impact energy of the droplet at state (1) to the sum of the impact energy at state (2)
and the lost work due to viscous dissipation.

E(1)S + E(1)KE =E(2)S +Wdiss (3)

In Equation (3), Wdiss is the work lost (or dissipated) due to viscous dissipation as the droplet
undergoes deformation from states (1) to (2) and may be approximated using the relation [25],

Wdiss
∼=��|U |2D3�2max=(3

√
Re) (4)

where |U | is the magnitude of droplet velocity, Re is the droplet Reynolds number de�ned as
Re=�|U |D=	, and �max is de�ned as the ratio of the maximum droplet diameter at impact to
its original size at state (1), i.e. �max =Dmax=D. Substituting this expression for work, along
with the surface, and kinetic energy de�nitions of Equations (1) and (2), into Equation (4),
allows for the following analytical result for �max [25]:

�max =

√√√√√ 12 +We

3(1− cos �) + 4
(

We√
Re

) (5)

where We is the Weber number, We=�D|U |2=�. Once �max is determined, the energy at
state (2) is known and will be used for determining the energy at state (3).
At state (3), one of three events is assumed to occur involving either droplet sticking,

rebounding, or shattering. At very high velocities (we only consider shattering regime, ex-
cluding rebounding and sticking regimes), droplet shattering or splashing is assumed to occur
if the characteristic impingement parameter, K, exceeds its critical value, Kcrit = 57:7 [26],
expressed in terms of the Ohnesorge number (Oh=

√
We=Re),

K =Re1:25Oh=We0:5Re0:25 (6)
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If K¿Kcrit, the droplet shatters (splashes). If K¡Kcrit, the droplet either rebounds or sticks
to the surface. The critical value, Kcrit = 57:7 of Mundo et al. [26] is applicable for a wide
range of substrate roughness (for example, 10−3¡
¡100 where 
 is the dimensionless sur-
face roughness de�ned in Reference [27]) and is adopted for our current numerical simu-
lations. However, Kcrit increases with decreasing surface roughness substantially (
� 10−3)
since an impacting liquid drop can spread further on a smoother surface before it shatters.
Mundo et al. [27] noted that Kcrit can increase up to Kcrit ∼ 140. Mao et al. [28] showed that
Kcrit can increase up to Kcrit ∼ 152 for a water droplet on para�n wax surface (see Figure
7(c) of Mao et al. [28]).
For the case where K¿Kcrit and the droplet shatters, linear theory is used to predict the

number of satellite droplets, Ns, discussed further in Section 2.3. Once Ns is known, the
new satellite droplet diameter is calculated using conservation of mass (i.e. Dsat =D(1)=N 1=3

s ).
The surface energy of a satellite droplet is

E(3
′′′)

S =��D2
sat (7)

The total energy at state (3′′′), the sum of both surface and kinetic energies of Ns number of
satellite droplets, is equal to the surface energy at state (2) accounting to energy lost through
the viscous dissipation, as in Equation (4). The kinetic energy of a satellite droplet can be
estimated using the principle of energy conservation:

E(2)S =Ns(E
(3′′′)
KE + E(3

′′′)
S ) (8)

Assuming that all satellite droplets have the same magnitude of kinetic energy, the magnitude
of an individual satellite droplet velocity is as follows:

|usat|=
√
12E(3

′′′)
KE

��D(3′′′)
sat

(9)

The distribution of satellite droplet velocities among its components would in general require
consideration of droplet momentum conservation, requiring detailed knowledge of the forces
exerted on the droplet and the break up processes over the duration of impact. This knowl-
edge is often di�cult to obtain and, may be impractical to implement for spray simulations.
Alternatively, a phenomenological description is pursued. In this approach, the droplets are
uniformly distributed azimuthally around the impact surface normal vector in a mean sense.
This modelling is accomplished by �rst expressing the velocity of the satellite droplet in
terms of a local surface normal coordinate system as shown in Figure 4 where the unit vec-
tors (ê||; ê⊥1; ê⊥2) correspond to directions along (parallel) and perpendicular to the local area
vector. A random number is generated for every satellite droplet to create an azimuthally
random distribution of droplets perpendicular to the surface of impact using the following
relations:

u(3
′′′)

|| = |usat|
√
1=3

u(3
′′′)

⊥1 = |usat|
√
2=3 cos(2�RN)

u(3
′′′)

⊥2 = |usat|
√
2=3 sin(2�RN)

(10)
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Figure 4. Relationship between impact surface and Cartesian coordinate systems.

where RN is a random number between the values of 0 and 1. The selection of the weighting
factors in Equation (10) is the consequence of two conditions. The �rst is to ensure the kinetic
energy is preserved. The second is an assumed partitioning of the kinetic energy such that 2/3
of it is from the components along the surface and 1/3 is associated with the velocity normal
to the surface. The latter condition is ad hoc but sensitivity studies revealed that the choice
of kinetic energy partitioning may not be important since the velocity of the satellite droplet
is quite small and is quickly dominated by local aerodynamic drag forces. Once the velocities
at state (3′′′) are known from Equation (10), then velocities for the impact plane coordinate
system are transformed back to a Cartesian system using the following transformation:

⎧⎪⎪⎨
⎪⎪⎩

u(3
′′)

v(3
′′)

w(3
′′)

⎫⎪⎪⎬
⎪⎪⎭ =T−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(3
′′)

||

u(3
′′)

⊥1

u(3
′′)

⊥2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
=

⎡
⎢⎢⎣
cos � cos  − sin  − sin � cos  
cos � sin  cos  − sin � sin  
sin � 0 cos �

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

u(3
′′)

||

u(3
′′)

⊥1

u(3
′′)

⊥2

⎫⎪⎪⎬
⎪⎪⎭ (11)

where the directional angles � and  are de�ned as

sin �= ê|| · êZ
cos � sin  = ê|| · êY (12)

cos � cos  = ê|| · êX

where ê|| is the unit normal area vector and is known from the geometry of the impact surface.

2.3. Prediction of satellite number using linear theories

The most well-known droplet instability theory was developed by Rayleigh [14]. Rayleigh
considered the in�nitely long inviscid column of liquid with negligible in�uence from the
gas phase, and hypothesized that an in�nitesimal disturbance would cause the jet to break up
under a capillary-based instability. The famous dispersion relation he obtained is

!2 =
�

�la3
(1− k2a3) ka

I1(ka)
I0(ka)

(13)
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where !=!r + i!i (i.e. !r =growth rate, i=
√−1, and !i=frequency of oscillation),

�=surface tension of the liquid, �l = liquid density, a=d=2 (d is the liquid jet thickness),
k=wavenumber =2�=� (i.e. �=wavelength), and I1(ka) and I0(ka) are modi�ed Bessel func-
tions of the �rst kind. By expanding the Bessel functions in a power series and computing
the maximum of the ! vs ka curve, he obtained the result

!max =0:97
√

�
�ld3

(14)

for which the corresponding wavenumber and wavelength are

ka=0:696≈ 0:7 �=4:51d (15)

Numerous experimental con�rmations of Rayleigh’s wavelength exist in low-speed jets. Many
researchers have extended the results to the fully nonlinear regime and have assumed that
the jet will actually fragment into sections 4:51d in length. Rieber and Frohn [8] used the
wavelength predicted by the Rayleigh theory and showed that the number of cusps (Nc)
around the rim of a splashing droplet predicted by the theory was consistent with their fully
3D numerical simulation (see Table 3 in Reference [8]). A similar splashing water droplet,
consistent with Rieber and Frohn’s observation, is shown in Davidhazy’s experiment [28] as
in Figure 1. In this study we extend this idea by attempting to predict satellite droplet sizes.
In this approach the geometry of the droplet after impact is envisioned as a torus shown in
Figure 2(a). Certainly, not all droplets are transformed into the shape of a torus because of the
change in the surface wettability and the interactions among the splashing droplets [29]. To
account for the complexity induced by the evolution of the droplet impact shape, an empirical
relation is needed based on the experimental observation, which is not yet available in the
literature. The current assumption, therefore, provides the simplest and analytical method for
modelling the satellite droplet formation.
The number of satellite droplets (Ns) is de�ned as the circumferential length at the maximum

spreading diameter (l=�Dmax) divided by the most dominant wavelength (�), i.e.

Ns =�Dmax=� (16)

where Dmax is determined using Equation (5) and the diameter of the torus, d, required in
Equation (17) for �, is estimated using mass conservation resulting in d=

√
2D3=(3�Dmax). It

is noteworthy that the number of �ngers is not equal to the number of satellite droplets (i.e.
Nf �=Ns), strictly speaking, due to nonlinear evolution of the liquid droplet spreading. However,
as in most stability theories, linear analysis does capture the most dominant wavelength of a
particular interest (see Figure 5). Thus, the nonlinear e�ect is assumed to be negligible for
our study.
Weber [15] extended Rayleigh’s analysis by adding the e�ect of viscosity of the jet which

gives

!2 +
3	
�la2

(ka)2!=
�

2�la3
(1− k2a2)k2a2 (17)
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Figure 5. Typical column jet �ow in the low-speed Rayleigh regime. The most dominant wavelength
obeys the Rayleigh’s �=4:51d. The secondarily small droplets are also produced due to nonlinear
e�ect [30]. Experimental image from Reference [31]. Reprinted by permission of Begell-House.

The coe�cient of the ! term accounts for viscous e�ects. McCarthy and Molloy [32] provided
the maximum growth rate of Weber’s Equation (17),

!max =

[√
8�la3

�
+
6	a
�

]−1
(18)

The corresponding most dominant wavelength analogous to Equation (18) is

�
d
=�

√
2 +

6	
2�la�

(19)

and the number of droplets is determined using Equation (16), with Equation (5) used again
to determine Dmax.
Allen [1] suggests that the number of satellite droplets was essentially dominated by the

surface tension instability, and thus, viscosity was of little importance. He developed a criterion
for the number of satellite droplets based on the Rayleigh–Taylor instability for a 2D �uid
layer undergoing acceleration. Aziz and Chandra [7] later extended this analysis by assuming
the acceleration of the interface, g, can be modelled as g=U 2=D resulting in the following
relation for the most unstable wavelength:

�=2�

√
3�D
U 2�

(20)

and found that this expression resulted in good predictions of satellite droplet numbers for
various �uid types when compared to the data [7, 24].
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The experimental work of Marmanis and Thoroddsen [3] and Thoroddsen and Sakakibara [9]
strongly contested Allen’s omission of viscosity [1]. They claimed that viscosity played an
important role in droplet impact instability and provided the following relation between the
impact Reynolds number and Ns, based on their experimental data:

Ns = 0:1ReI ReI =
U
2
√
�

(
�2�D3

�

)1=4
(21)

More recently, Allen’s Rayleigh–Taylor analysis was revisited by Kim et al. [4] using a
radially expanding liquid jet as the baseline potential �ow solution with superimposed az-
imuthal and radial disturbances. Analytical predictions of the number of �ngers by
Mehdizadeh et al. [5] using this theory showed that the predicted number of �ngers agrees
very well with their data for impacting water droplets, and they proposed the following em-
pirical formula for the number of �ngers, applicable over a wide range of Weber numbers,
102¡We¡5× 104:

Nf = 1:14
√
We (22)

This study assumes that the number of satellite droplets is equal to the number of �ngers
(i.e. Nf =Ns).

3. RESULTS AND DISCUSSION

3.1. Linear theory analyses

Figure 6 shows the number of satellite droplets for the linear theories discussed in
Section 2.3 for a 300 �m water droplet. As is shown, the Rayleigh–Taylor wavelength pre-
dicts the largest number of satellite droplets while the predictions using Rayleigh instability
theory predicts the fewest. The empirical �t to the experimental data of Mehdizadeh et al. [5]
is essentially equivalent to the wavelength predicted by the Rayleigh–Taylor instability, and
therefore, is eliminated for the sensitivity studies in Section 3.2. The Weber instability, which
includes the e�ect of liquid viscosity, predicts the wavelength to be nearly the same as that
predicted by the Rayleigh instability, and thus, the Weber equation also is eliminated for
the sensitivity studies in Section 3.2. The viscosity term of the Weber wavelength in Equa-
tion (19) stabilizes the instability, therefore the wavelength is larger. For the chosen liquid
(water), the viscosity plays no signi�cant role whose fact is found when compared the wave-
length of the Rayleigh equation and that of the Weber equations. Note that both the Weber and
Rayleigh analyses assume that the dimensionless wavenumber, ka, is relatively small; therefore
only large wavelengths are considered (i.e. �=2�=k � a). The Rayleigh–Taylor wavelength
has the smallest wavelength when compared with others. The length scale of Marmanis–
Thoroddsen [3] which addresses the importance of viscosity, similar to the Weber equation,
is somewhat of a compromise between the large wavelengths (Rayleigh and Weber) and the
small wavelengths (Rayleigh–Taylor).

3.2. Modelling spray impingement over a �at surface

To validate the applicability of the linear theories, a simple droplet impingement over a
�at surface is simulated. Figure 7 is an experimental image of a spray impingement, taken
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Figure 6. The prediction of satellite droplet number using various linear theories. The initial
droplet size of D=300 �m is used. The liquid is water. Note that the Rayleigh solution (solid line)

is overlapped with that of the Weber equation.

Figure 7. Experimental snapshot at 10ms for the injected iso-octane fuel droplets over the �at Plexiglas
surface [16]. E�ective cone angle is 1:7◦. The domain of the experimental image is 52mm× 26mm.

Courtesy of J. Powell of University of Illinois at Urbana-Champaign.

from Reference [33]. Shattered droplets bounce o� at skewed angles subsequent to impact;
these shattered droplets are signi�cantly smaller than the incoming primary droplets. Powell
and Lee’s data [16] indicate that the satellite droplet ranged around 0:16Dsat=D6 0:25 for
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Figure 8. Modelling snapshots at 10ms using various linear theories (Rayleigh and Rayleigh–Taylor)
and the empirical formula of Marmanis–Thoroddsen [3]. The 52mm× 26mm 2D (x–z) views are

obtained at the cross-section of y=0. The liquid is iso-octane.

iso-octane droplets (whose properties are �iso = 692 kg=m3, �iso = 4:6× 10−7 m2=s, and �iso =
0:022 kg=s2) impinging on a Plexiglas surface.
Modelling is conducted with the initial condition of the Sauter mean diameter, D32 = 300 �m,

taken from the experimental data obtained by Powell and Lee [16]. Using the initialization
technique of Yoon et al. [34], the initial arithmetic mean diameter is D10 = 184 �m when
using D32 = 300 �m and the Rosin–Rammler dispersion coe�cient, q=1:77, obtained from
Reference [35]. The experimental set-ups (i.e. mass �ow rate, operating pressure, injector type,
etc.) of Powell and Lee [16, 33] were quite similar to those of Trujillo et al. [35] (private
communication with J. Powell of UIUC). The mass �ow rate was ṁ=0:00144 kg=s with
8.45ms injection period with 12:16mg=injection pulsed pintle injector [16]. The computational
domain for our simulation extends 0:2m× 0:2m× 0:1m using a 40× 40× 20 grid, and is
consistent with the computation nodes used by Trujillo et al. [35].
Figure 8 shows snapshots of the predicted spray impingement using the Rayleigh, Rayleigh–

Taylor and Marmanis–Thoroddsen models. As expected, the Rayleigh theory over-predicts
the satellite droplet size (see Figure 9) and as a result, also over-predicts their momentum.
Consequently, the snapshots are not similar to the experimental image shown in Figure 7.
The modelling result obtained using the Rayleigh–Taylor and Marmanis–Thoroddsen theories
seems to be relatively comparable to the experimental image shown in Figure 7. The quanti-
tative comparison shown in Figure 9 indicates that the Rayleigh–Taylor theory under-predicts
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Figure 9. The comparison for the Sauter mean diameter, D32, using various linear theories. Statistics
are taken over the radial direction (x) at vertical height, z=5mm. The liquid is iso-octane.

the satellite droplet size when compared with the Powell and Lee’s experimental data [16].
Moreover, the Sauter mean diameter (D32) increases with respect to the radial direction (x)
and is not captured using the Rayleigh–Taylor instability, while the experimental data indicate
that larger droplets tend to travel further in the radial direction due to their higher momentum.
Even though the Rayleigh–Taylor theory accurately predicts the number of satellite droplets
from a single droplet impact [4, 5, 7], the theory over-estimates the satellite number (or under-
predicts the satellite droplet size) for the chosen test case [16]. It should be noted that the
experiments of Kim et al. [4], Mehdizadeh et al. [5], and Aziz and Chandra [7], and were
carefully conducted for a single droplet impact while the case shown in Figures 7 and 8 is
the spray impingement of poly-dispersed droplets continuously injected for a certain interval.
It is noted that the additional experimental work on the spray impingement over a �at can be
found in Reference [36].

3.3. Modelling spray impingement over a circular cylinder

3.3.1. Computation details. We extend our simulation capabilities to the case of a spray im-
pingement over a circular cylinder for the experimental conditions of Presser et al. [37]. All
simulations are performed for a duration of two physical seconds on a 0:48m× 0:30m× 0:30m
(−0:18m¡x¡0:3m, −0:15m¡y¡0:15m, and −0:15m¡z¡0:15m) domain to allow for
initial �ow transients to move out of the computational domain, and to collect data to con-
struct time-averaged statistics. The constant free-stream air velocity, u∞=4m=s, is speci�ed
at the inlet which modelled the grid-generated turbulence of the wire mesh screen (see spray
injection plane in Figure 10) with the speci�ed turbulence level of TKE=0:194 J=kg
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Figure 10. View of the injected water spray over the unheated cylinder of
experiment [37]. E�ective cone angle is 20◦.

(turbulence kinetic energy) and TDE=0:470 J=kg (turbulent dissipation energy) to best match
the experimental conditions. When adopting u∞ as a mean streamwise velocity, the �ow
Reynolds number based on cylinder diameter is Re�ow = u∞Dcyl=�air = 8767. A 70× 50× 50
Cartesian grid is employed (thus, the total number of computational nodes is 175 000) with
grid stretching employed around the cylinder to capture relevant details of the �ow-to-wall
boundary layer. The initial spray angle of 5◦ is chosen so all droplets are in collision against
the frontal surface of the circular cylinder whose centre of mass is located at x= z=0 in the
y=0 plane. Two di�erent values of the operating mass �ow rate are considered in order to in-
vestigate the growth rate ampli�cation of the linear theories with increasing the droplet impact
Weber number (i.e. We∝U 2). The applied operating mass �ow rate is ṁ=3:927× 10−3 kg=s
and ṁ=7:854× 10−3 kg=s, which correspond to the injection liquid speed, Uinj = 20m=s and
Uinj = 40m=s, respectively, for the given nozzle diameter, d=0:5mm. Each simulation is con-
ducted by running an unsteady RANS simulation and collecting ensemble statistics after an ini-
tial time of t=0:5 s when the �ow attained a statistical stationary state. Statistics are collected
from t=0:5 to 2.0 s at the intervals of 0.0002 s; thus, 7500 statistic collection frequency is
applied during 1.5 s. The average droplet Reynolds, and Weber number for the given operating
conditions are Re=UinjD10=�=1594, Re=3189 and We=�U 2

injD10=�=487, We=1947. The
corresponding Ohnesorge number for both operating conditions is Oh=

√
We=Re≈ 0:01384.

It is noted that the experimental image shown in Figure 10 is obtained from Reference [38].
In their case, the spray injection velocity was not high enough to result in the ‘shatter-
ing’ regime. The characteristic impingement parameter was K¡57:7 that only the droplet
‘rebounding’ and ‘sticking’ occurred in the case of Yoon et al. [38] while our investigation is
focused on the shattering regime whose range is 0¡K¡300 for Uinj = 20m=s and 0¡K¡600
for Uinj = 40m=s.

3.3.2. Initial conditions. The spray injection is initiated at locations x= − 0:18m and
y= z=0:0m. To represent conditions at the nozzle exit, presumed-shape droplet size and
velocity distributions are often used. There are many known droplet size distribution func-
tions such as normal, log-normal, root-normal, Rosin–Rammler, Nukiyama–Tanasawa, and
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log-hyperbolic [39]. We have chosen the Rosin–Rammler distribution (whose input parame-
ters are X and q) since the distribution was shown to have merits in modelling the initial
conditions for the nozzle-type selected by Yoon et al. [38]. The boundary of the numerical
simulation starts at the position of the nozzle exit. We have chosen the mean droplet diameter
at the nozzle exit to be X =100 �m, one of the input parameters for the Rosin–Rammler dis-
tribution. The value of q=3 is chosen based on the PDPA (phase Doppler particle analyser)
measurement of Yoon et al. [38]. For the given dispersion coe�cient, q=3, the arithmetic
mean diameter is D10 =X�(1=q+ 1)=89:3 �m at the nozzle exit.

3.3.3. Computational results. It is mentioned in Section 3.3.1 that the cone angle is set as
�=5◦ to force all injected droplets into collision with the cylinder. When a large portion of
the injected droplets de�ects around the cylinder without collision at large cone angles, these
de�ected droplets are mixed with the shattered droplets behind the cylinder, and thus, the sole
e�ect of the shattered droplets is di�cult to observe (see Figure 11).
Figure 12 shows the variation of the Sauter mean diameter, D32, over the axial domain

at the vertical location of z=40mm for two di�erent injection conditions, (a) Uinj = 20m=s
and (b) Uinj = 40m=s. For the quantitative comparisons, the vertical location of z=40mm is
selected because the frequency of the droplet presence is maximized at that location.
The computational results are obtained using the Rayleigh, Marmanis–Thoroddsen, and

Rayleigh–Taylor theories. The Weber equation is not considered in this case because its
solution is essentially identical to that of the Rayleigh theory for the chosen liquid (water).
Viscosity does not play an important role in the �ow regime considered in this section,
especially for theories concerned with larger wavelengths such as the Rayleigh and Weber
instability theories (i.e. ka→ 0).
As expected, the Sauter mean diameter decreases in the choice order of the Rayleigh,

Marmanis–Thoroddsen, and Rayleigh–Taylor theories. The di�erences between the Marmanis–
Thoroddsen and Rayleigh–Taylor theories increase with increasing injection speed (compare
Figures 12(a) and (b)). The ‘U’-shaped pro�le of D32 in Figure 12 is attributed to the e�ect

Figure 11. Di�erent droplet characteristics behind cylinder using various injecting cone
angles for the shattering droplets.
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Figure 12. The variation of the Sauter mean diameter, D32, over the axial direction
(x) at the vertical location of z=40mm: (a) The injection speed is Uinj = 20m=s;

and (b) the injection speed is Uinj = 40m=s.

Figure 13. Velocity vector around the cylinder: recirculation zone is developed behind the cylinder.
The contour colour is scaled with the �ow axial velocity in the unit of (m/s). The injection speed is

Uinj = 20m=s. The empirical formula of Marmanis–Thoroddsen is used.

of the recirculation zone behind the cylinder shown in Figure 13 which serves to trap smaller
droplets behind the cylinder.
The axial velocity pro�les of the shattered droplets are shown in Figures 14(a) and (b) for

two di�erent injection conditions, Uinj = 20 and 40m=s. The increase in U around the cylinder
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Figure 14. The variation of the droplet axial velocity, U , over the axial direction
(x) at the vertical location of z=40mm: (a) The injection speed is Uinj = 20m=s;

and (b) the injection speed is Uinj = 40m=s.

Figure 15. The variation of the droplet number density over the axial direction (x) at the vertical location
of z=40mm: (a) The injection speed is Uinj = 20m=s; and (b) the injection speed is Uinj = 40m=s.

results in an acceleration of the shattered droplets. As the axial location increases, the droplet
velocity is reduced due to drag and �nally reaches the free-stream velocity of u∞=4m=s in
the downstream location. The resulting di�erences among the applied theories are prominent
in Figure 14(b), while the di�erences are quite small in the case of Figure 14(a). The droplet
distribution of the Rayleigh–Taylor theory is more sensitive to the �ow environment due to
the droplets’ light masses, so, their decrease in velocity is more rapid compared to results
using other theories since the rate of velocity reduction is proportional to the inverse of droplet
size.
The droplet number density is plotted for various theories in Figure 15. As expected, the

droplet number density is greatest for the Rayleigh–Taylor theory because it produces the
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Figure 16. 3D snapshots of the droplet distribution comparison between Rayleigh and Rayleigh–Taylor
linear theories. The satellite droplet size using the Rayleigh theory is over-predicted as compared to

that predicted when using the Rayleigh–Taylor theory.

smallest droplet for the given mass �ow rate. The snapshot of the comparison between the
Rayleigh and the Rayleigh–Taylor theories is plotted in Figure 16, which shows a signi�cant
di�erence in droplet characteristics behind the cylinder.
The joint probability density functions (JPDF) of the satellite droplets are shown for

various theories in Figure 17. All three theories indicate that the larger droplets tend to
have a greater velocity following the impact. A more uniform JPDF (lesser number of
size spectrum) is shown as the overall droplet size is reduced (i.e. Rayleigh→Marmanis–
Thoroddsen→Rayleigh–Taylor).

4. CONCLUSIONS

Several linear theories have been implemented and tested for simulating shattering of droplets
from a turbulent water spray over both a �at surface and a circular cylinder. A stochastic
separated �ow (SSF) technique that includes sub-models for droplet dynamics is applied for
the simulation. The new droplet-shattering model is developed for the simulation of the poly-
dispersed spray. Comparison between the numerical results and the experimental data indicate
that the empirical formula of Marmanis and Thoroddsen [3] gives the best prediction for the
satellite droplet numbers and their subsequent transport. Though the viscosity e�ect can be ne-
glected for relatively low viscous liquids (such as water or gasoline), viscosity tends to dampen
the instability and reduce the satellite number for highly viscous liquids. That viscosity reduces
satellite numbers is also manifested in the comparison between the Rayleigh and Weber
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Figure 17. Joint PDFs of satellite droplet size and velocity for various linear theories.

equations. For the poly-dispersed spray impingement involving thousands of droplets, the em-
pirical relation from Reference [3] gave the best prediction when compared with the
experimental data of Powell and Lee [16]. Numerical simulation is extended for the spray
impingement over a circular cylinder case for the purpose of �re suppression application. The
numerical results are obtained for the potential quantitative comparison with the experimental
data.

NOMENCLATURE

a a half of liquid ring=rim thickness, a=d=2
d liquid ring=rim thickness
D droplet diameter
k wavenumber
K characteristic impingement parameter
l circumferential length of a ring/torus de�ned as l=�Dmax
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Nc;f ;s number of cusp, �nger, and satellite droplets
Oh Ohnesorge number de�ned as Oh=

√
We=Re

Re Reynolds number de�ned as Re=�UD=	=UD=�
U droplet velocity
We Weber number de�ned as We=�U 2D=�

Greek letters


 dimensionless surface roughness
� wavelength
	 dynamic viscosity
� kinematic viscosity de�ned as �=	=�
! growth rate
� liquid density
� surface tension

Subscripts

()g gas property
()l liquid property
()max maximum spreading condition of a droplet upon impact
()rim ring (or ‘crown’ rim) property
()sat satellite (or ‘�nger’) droplet property
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